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We introduced alikelihood ratio of the
theoretical likelihood to “data
likelihood” derived from data as the
goodness of fit measure.

Obtain general theory of gof for both
binned and unbinned likelihood fitting.

We now use Bayes' theorem with the new
theory to calculate posterior densities.

Surprising result— No Bayesian prior
needed. Frequentist formula for
posterior density of fitted parameter.

Transformation properties of posterior
densities



Notation

s denotes signal. Can be multi-dimensional.

c denotes configurations and signifies data. Can be
multi-dimensional

P(s|c) signifies the conditional probability density in s,
given c.

P(c|s) signifiesthe conditional probability density in c,
given s. i.e It defines the theoretical model-theory
pdf which obeys the normalization condition.

(P(c|s)dc=1

Let C, denotethedataset C ,i =1,n

Then iEf‘

Lo P(c, [9) =0 P(c |9)
=1

isthe likelihood of observing the dataset C,
Likelihood Ratio

_ PG, |9

= provides gof
P™(C,)
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Bayes Theorem-Simple
derivation
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Define ajoint
probability
density P(s,c)
such that

@ P(s,c)dsdc=1

Then define
projections P(c),

P(s) such that

OP(s,c)dc = P(s); (P (s,c)ds = P(c);
(P(s)ds=1 cP(c)dc=1

Define conditional probablllty PF§C|S%

P(s,C) (s,C
aong line AB P(C|S)‘Oo( sodc_ P9

Define conditional probability P(s|c)
aonglineCD - P(se) _ P(sc)
P(scds  P(c)




Bayes' Theorem-Simple

derivation
e Then
P(s,c) =P(s|c)P(c) =P(c|s)P(g)
or P(s|c) = P(CI9RS) Bayes Theorem

and P(c) = P (c|s)P(s)ds
P(s) = g°P(s|c)P(c)dc

« Generdizing to dataset C

n

P(s,C,) = P(s|C,)P(C,) = P(C, |s)P(s)
P(C, [9P9)
P(C,)

and P(C,) = P (C, | 9)P(s)ds
P(s) = ¢P(s|c,)P(c,)dc,

or P(s|C,) =



Data Likelihood from Data is
| ncompatible with Bayesian Prior

Define terms:- pdf of afixed parameter s.

We define P(s) as the distribution of the
maximum likelihood value s when the
experiment with data set with n membersis
repeated N times (ensemble) and N® ¥.
We expect P(s) tonarrow asn® ¥.

The true value of sisthe maximum likelihood
point of P.(s). Thisis an assumption of
unbiasedness in the experiment. All
distributions of simply adistribution of s
and vice versa. The true value is a number
and does not have a distribution. The true
vaue i1s unknown and unknowable with
Infinite precision. The function P.(s) isalso
unknowable.

To calculate errors we assume that given a
sngledataset C, , not only isthe
maximum likelithood value s knowable,
but there is information present on the
distribution of s aswell-i.eerrorson s’ are
computable. We call such afunction P(s|c,)
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Data Likelihood from Data is
| ncompatible with Bayesian Prior

e Then we can write

P.(s) =Sl ¢ YP*?(C )dc

but P“?(G )dc, = dWN the ensemble density

gl "
Leadsto P,(s) =limN ® ¥g—a P(sE, )—
k=1 7]

* Bayesian way

PE,[9)P(s) _ P(C, [s)P(s)

P(Slén) — PBaYeS((—jn) (\j:)((_fn |S) P(S)dS

where P*¥=(C ) = OP(C, | s)P(s)ds an uninteresting theoretical constant!
Bayesiansthen compute

g(s € YP®%(C.)dc = P(s)an nindependent Bayesian prior!

» Bayesdatistics is incompatible with goodness of
fit. Y ou can use Bayestheorem to compute P(s|c,)
without the use of Bayselan priors



Error Bootstrap

The quantity P,(s) is the ensemble average of al the
posterior densities P(SIC.) | Its maximum
likelihood value is the true value s;.

We only have measurements from one member of
the ensemble namely €,

We want to describe to the system our lack of

knowledge of the true value. |.e. We want to say
thatitisat s ORitisat s, ORIitisat s, Ateach
value of s, we hypothesize that that is the true
value.

The likelihood ratio L(s) gives the goodness of fit
at that value.

At the true value s=s, the joint probablilty P(s,C) Is
given by

P(s,c) = P(s|C,)P(C,) = P(C, [9)R,(sr)

As you change the value of s, the whole
distribution P (s) has to move so that the true value
Isat the new value of s. I.e. P (s;) in Bayes
eguation is a constant.



Error Bootstrap

(s}

o

=

®

o

24 El

ey Hoyesan-Way
B

= 5
2

o

(s)

.lll%_. i’?. New Way

.’I | Iull lilln
OP(sIc)ds=1= i (ST) OD(c s)ds
R.(sr) _ 1
P(C) P(C,|s)ds
P(s|c) = nl¥

(P(C, |9)ds

Thisisthe same formula as
frequentists use! No Bayesian prior.



| llustrative example

Measure a mass whose true value sis unknown with an

apparatus whose standard error s is known to be 5 gms.
A single data set consists of n=100 measurements

C,i=1,100. Then

(c-9)?

e 282

1

J2ps

i=n
P(C, 19 =0 P |9

P(c|s) =

Do goodness of fit using the method of unbinned
likelihood fits. Obtain NLLR, likelihoods for each
individual fit.

Determine p(g|¢ ) for eachfit. Average over
ensemble N=1000 fits to obtain a better value of P (s).
We reuse Bayes theorem to re-evaluate posteriors, since
we know P (s) from the ensemble better than from
individual measurements.

One more iteration .
Piter (Sl 6n) — P(Cn | S) Pn (S)
O°(C, [9)F,(s)ds

1 k3N

wﬂﬁzﬁaa“@mo
k=1




| llustrative example
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| llustrative example. | terated
functions
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| llustrative example
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